李宗鑫,秦勃,王梦倩.基于时空关系模型的交通信号灯的实时检测与识别[J].计算机科学,2018,45(6):314-319
基于时空关系模型的交通信号灯的实时检测与识别
Real-time Detection and Recognition of Traffic Light Based on Time-Space Model
投稿时间:2016-12-18  修订日期:2017-03-25
DOI:10.11896/j.issn.1002-137X.2018.06.055
中文关键词:  交通信号灯检测,时空关系模型,ADAS,图像快速分割,模式识别
英文关键词:Traffic light detection,Time-space model,ADAS,Fast image segmentation,Pattern recognition
基金项目:本文受国家自然科学基金(61102108),湖南省自然科学基金(2016JJ3106),湖南省教育厅项目(16B225,YB2013B039),南华大学青年英才支持计划和南华大学重点学科(NHXK04)资助
作者单位E-mail
李宗鑫 中国海洋大学计算机科学与技术系 山东 青岛266100 ningyanglzx@163.com 
秦勃 中国海洋大学计算机科学与技术系 山东 青岛266100  
王梦倩 中国海洋大学计算机科学与技术系 山东 青岛266100  
摘要点击次数: 242
全文下载次数: 201
中文摘要:
      交通信号灯的检测与识别是无人驾驶汽车和高级驾驶辅助系统(ADAS)的重要组成部分。针对城市道路复杂环境下的交通信号灯的检测和识别需求,依据多帧视频图像序列的时空连续变化关系构建多帧视频图像的时空关系模型(Time-Space Model,TSM),提出了一种新的基于多帧视频图像序列的交通信号灯的检测和识别算法。算法包含3部分:基于颜色的视频图像快速分割压缩算法,用于提高计算效率;引入多帧视频图像序列的时空关系模型,以提高交通信号灯检测的准确性 ;根据图像的HOG(Histogram of Oriented Gradient)特征,通过SVM(Support Vector Machine)分类器对信号灯进行识别。实验结果表明,算法的鲁棒性强、检测识别速度快、准确率高。
英文摘要:
      Detection and recognition of traffic light are important for driverless cars and advanced driver assistance systems(ADAS).In order to satisfy the requirements of traffic light detection and recognition in complex urban environment,a real-time detection and recognition algorithm based on time-space model (TSM) was proposed.It was established based on the time-space continuous variation relationship of video-frame sequence.The proposed algorithm consists of three parts.The first part is fast image segmentation and compression algorithm based on color,which is used to improve the computational efficiency.Second,time-space model of multi-frame image sequence is introduced to improve the accuracy of detection stage.Third,recognition of traffic lights is achieved by using support vector machine (SVM) with histogram of oriented gradients (HOG) features.Experiment results show that this novel algorithm has strong robustness,high efficiency and accuracy.
查看全文  查看/发表评论  下载PDF阅读器