刘奕志,程汝峰,梁永全.一种基于共享近邻的密度峰值聚类算法[J].计算机科学,2018,45(2):125-129, 146
一种基于共享近邻的密度峰值聚类算法
Clustering Algorithm Based on Shared Nearest Neighbors and Density Peaks
投稿时间:2017-04-08  修订日期:2017-06-11
DOI:10.11896/j.issn.1002-137X.2018.02.022
中文关键词:  聚类,共享近邻,相似性度量,密度峰值
英文关键词:Clustering,Shared nearest neighbors,Similarity measure,Density peak
基金项目:本文受国家自然科学基金(61203305,2),山东省自然科学基金(ZR2015FM013),山东省重点研发计划(攻关)(2016GSF120012),山东省“泰山学者”攀登计划资助
作者单位E-mail
刘奕志 山东科技大学计算机科学与工程学院 山东 青岛266590 山东省智慧矿山信息技术重点实验室 山东 青岛266590  
程汝峰 山东科技大学计算机科学与工程学院 山东 青岛266590 山东省智慧矿山信息技术重点实验室 山东 青岛266590  
梁永全 山东科技大学计算机科学与工程学院 山东 青岛266590 山东省智慧矿山信息技术重点实验室 山东 青岛266590 lyq@sdust.edu.cn 
摘要点击次数: 718
全文下载次数: 353
中文摘要:
      基于加权K近邻的密度峰值发现算法(FKNN-DPC)是一种简单、高效的聚类算法,能够自动发现簇中心,并采用加权K近邻的思想快速、准确地完成对非簇中心样本的分配,在各种规模、任意维度、任意形状的数据集上都能得到高质量的聚类结果,但其样本分配策略中的权重仅考虑了样本间的欧氏距离。文中提出了一种基于共享近邻的相似度度量方式,并以此相似度改进样本分配策略,使得样本的分配更符合真实的簇归属情况,从而提高聚类质量。在UCI真实数据集上进行实验,并将所提算法与K-means,DBSCAN,AP,DPC,FKNN-DPC等算法进行对比,验证了其有效性。
英文摘要:
      Robust clustering by detecting density peaks and assigning points based on fuzzy weighted K-nearest neighbors(FKNN-DPC) is a simple and efficient clustering algorithm,which can automatically detect the cluster center and assign the non-cluster center sample based on weighted K-nearest neighbors quickly and accurately.It is powerful in recognizing high quality cluster in any scale ,any dimension,any size and any shape of the data set,but the weight calculation in assigning strategies only considers the Euclidean distance between samples.In this paper,a similarity measure based on shared neighborhood was proposed,and the sample assigning strategy was improved by this similarity,so that the cluster is more consistent with the real attribution,thus improving the clustering quality.The effectiveness of the algorithm is verified by comparing the experiments on the UCI real data set with the K-means,DBSCAN,AP,DPC,and FKNN-DPC algorithm.
查看全文  查看/发表评论  下载PDF阅读器