焦莉娟,王文剑.一种基于差异系数的稀疏度自适应图像去噪算法[J].计算机科学,2018,45(2):94-97, 134
一种基于差异系数的稀疏度自适应图像去噪算法
Sparsity-adaptive Image Denoising Algorithm Based on Difference Coefficient
投稿时间:2017-03-19  修订日期:2017-05-03
DOI:10.11896/j.issn.1002-137X.2018.02.016
中文关键词:  图像去噪,K奇异值分解,稀疏度自适应,差异系数
英文关键词:Image denoising,K-means singular value decomposition,Sparsity-adaptive,Difference coefficient
基金项目:本文受国家自然科学基金(61673249,1),山西省回国留学人员科研资助
作者单位E-mail
焦莉娟 忻州师范学院计算机系 山西 忻州034000  
王文剑 山西大学计算机与信息技术学院 太原030006 wjwang@sxu.edu.cn 
摘要点击次数: 371
全文下载次数: 299
中文摘要:
      基于压缩感知的K-means Singular Value Decomposition(K-SVD)图像去噪算法具有良好的自适应性和细节恢复能力,但需事先给定稀疏度K。 该方法的去噪效果会受到图像稀疏度的影响。另外,训练初始系数时用到的追踪类算法中通过向量内积值的大小评定图像分量间相关度的方法,因存在大值噪声点,容易造成假相关,从而影响去噪效果。提出基于差异系数的稀疏度自适应K-SVD去噪算法,通过引入差异系数来平衡因噪声点造成的假相关问题,同时使用相关度均值作为阈值来自适应地产生稀疏度K,避免因给定不恰当的稀疏度而影响去噪效果的问题。在USC标准库上的实验结果表明,所提算法在去噪效果方面有一定的优越性。
英文摘要:
      With the remarkable adaptability and the details recovery capability,K-SVD is a highly effective method based on sparse representation theory in image denoising.But the sparsity K should be given in advance,and different images have different K values in fact.On the other hand,pursuit algorithms which are used in evaluating the relevance between vectors of an image by calculating vector inner product,are brought into K-SVD to train sparse coefficients.Denoising effect is reduced because a few noisy pixels are likely to cause false relevance.This paper addressed this problem and proposed a novel sparsity-adaptive speeded K-SVD(SASK-SVD) algorithm based on different coefficient,which can improve the efficiency.The different coefficient is to eliminate false relevance.The sparsity K is adaptively generated by using the average correlation as the threshold.This study conducted extensive experiments to demonstrate these ideas.The experimental results show that the proposed method achieves the state-of-the-art denoising performance.
查看全文  查看/发表评论  下载PDF阅读器