赵鹏飞,赵涓涓,强彦,王峰智,赵文婷.多输入卷积神经网络肺结节检测方法研究[J].计算机科学,2018,45(1):162-166
多输入卷积神经网络肺结节检测方法研究
Study on Detection Method of Pulmonary Nodules with Multiple Input Convolution Neural Network
投稿时间:2017-05-08  修订日期:2017-08-11
DOI:10.11896/j.issn.1002-137X.2018.01.028
中文关键词:  计算机辅助诊断,卷积神经网络,微小结节检测,LIDC-IDRI数据集预处理
英文关键词:Computer-aided diagnosis,Convolution neural network,Pulmonary nodule detection,LIDC-IDRI dataset preprocessing
基金项目:本文受国家自然科学基金(61373100),虚拟现实技术与系统国家重点实验室开放基金(BUAA-VR-16KF-13),虚拟现实技术与系统国家重点实验室开放基金(BUAA-VR-17KF-15),山西省回国留学人员科研资助
作者单位E-mail
赵鹏飞 太原理工大学计算机科学与技术学院 太原030024 zh_juanjuan@126.com 
赵涓涓 太原理工大学计算机科学与技术学院 太原030024 zh_juanjuan@126.com 
强彦 太原理工大学计算机科学与技术学院 太原030024  
王峰智 山西省煤炭中心医院PET/CT中心 太原030006  
赵文婷 太原理工大学计算机科学与技术学院 太原030024  
摘要点击次数: 729
全文下载次数: 481
中文摘要:
      针对传统计算机辅助诊断系统中肺部结节检出过程复杂,检出结果依赖于分类前期每个步骤的性能,以及存在假阳性率高的问题,提出了一种基于卷积神经网络的端到端的肺结节检测方法。该方法首先使用大量带标签的肺结节数据对构建的多输入卷积神经网络进行训练,实现从原始数据到语义标签的有监督学习。然后采用快速边缘检测方法和二维高斯概率密度函数构建候选区域模板,从待检测CT序列中获取候选区域并将其作为多输入卷积神经网络的输入数据。最后采用判定阈值实现疑似肺结节区域标注,同时在相邻的CT影像中进行重点检测。在LIDC-IDRI数据集上的大量实验结果表明,所提方法在肺部CT影像中对微、小结节的检出率较高;同时,重点检测模板能够小幅降低微、小结节检测的假阳率。
英文摘要:
      In view of that the detection process of pulmonary nodules in traditional computer-aided diagnosis system is complex,the detection results depend on the performance of each step in the early stage of classification,and there is a problem of high false positive rate,this paper presented an end-to-end detection method of pulmonary nodules based on convolution neural network.First,it uses a large number of tagged pulmonary nodule data to input the newly constructed multi-input convolution neural network for training,realizing the supervised learning from the raw data to the semantic label.Then,it uses the fast edge detection method and the two-dimensional Gaussian probability density function to construct the candidate region template,and the obtained candidate region from the CT sequence is used as the input data of the multi-input convolution neural network.Finally,it uses a diagnostic threshold to annotate the suspected pulmonary nodule region,which will be emphatically checked in the next frame.A large number of experimental results on LIDC-IDRI data set show that the detection rate of the small nodules in the lung CT image with the proposed method is high,and the candidate region template with key monitor can slightly reduce the false positive rate of the small nodules detection.
查看全文  查看/发表评论  下载PDF阅读器