马文娟,董红斌.基于集成卷积神经网络的人脸年龄分类算法研究[J].计算机科学,2018,45(1):152-156
基于集成卷积神经网络的人脸年龄分类算法研究
Face Age Classification Method Based on Ensemble Learning of Convolutional Neural Networks
投稿时间:2017-05-08  修订日期:2017-09-09
DOI:10.11896/j.issn.1002-137X.2018.01.026
中文关键词:  卷积神经网络,年龄分类,集成
英文关键词:Convolutional neural network,Age classification,Ensemble
基金项目:本文受国家自然科学基金(61472095,61573362),黑龙江省教育厅智能教育与信息工程重点实验室开放基金资助
作者单位E-mail
马文娟 哈尔滨工程大学计算机科学与技术学院 哈尔滨150001  
董红斌 哈尔滨工程大学计算机科学与技术学院 哈尔滨150001 donghongbin@hrbeu.edu.cn 
摘要点击次数: 678
全文下载次数: 433
中文摘要:
      人脸年龄估计由于在人机交互和安全控制等领域有潜在应用,因此得到了广泛关注。文中主要进行人脸年龄分组的研究,针对人脸年龄分类问题提出了一种基于集成卷积神经网络的年龄分类算法。首先,训练两个以人脸图像为输入的卷积神经网络,当用卷积神经网络直接提取人脸图像的特征时,主要对 深度的全局特征 进行提取。为了补充人脸图像的局部特征,尤其是纹理信息,将提取的LBP(Local Binary Pattern)特征作为另一个网络的输入。最后,为了结合人脸的全局特征和局部特征,将这3个网络进行集成。该算法在广泛使用的年龄分类数据集Group上取得了不错的效果。
英文摘要:
      Face age estimation has attracted much attention due to its potential applications in the areas of human-computer interaction and safety control.This paper focused on face age classification task,and proposed an age classification algorithm based on ensemble convolutional neural network for face age classification.Firstly,two convolutional neural networks which make face images as input are trained,and the deeply global features are extracted mainly by using convolutional neural network.In order to further supply the local features of face images,especially texture information,the extracted LBP feature will be taken as input for another network.Finally,in order to combine the global features and the local features of the face images,three networks are integrated to generate good results in the widely used age estimation dataset.
查看全文  查看/发表评论  下载PDF阅读器