范星奇,李雪峰,赵素云,陈红,李翠平.加权模糊粗糙约简[J].计算机科学,2018,45(1):133-139
加权模糊粗糙约简
Weighted Attribute Reduction Based on Fuzzy Rough Sets
投稿时间:2017-05-08  修订日期:2017-09-15
DOI:10.11896/j.issn.1002-137X.2018.01.022
中文关键词:  模糊粗糙集,属性约简,权重,高维数据
英文关键词:Fuzzy rough sets,Attribute reduction,Weights,High dimension datasets
基金项目:
作者单位E-mail
范星奇 中国人民大学信息学院 北京100872  
李雪峰 中国人民大学环境学院 北京100872  
赵素云 中国人民大学信息学院 北京100872 zhaosuyun@ruc.edu.cn 
陈红 中国人民大学信息学院 北京100872  
李翠平 中国人民大学信息学院 北京100872  
摘要点击次数: 216
全文下载次数: 169
中文摘要:
      基于模糊粗糙集的传统约简算法的时间代价较高,在处理大规模数据时耗时过长,且在许多实际大规模数据集上存在有限时间内无法收敛等问题。因此将权重引入属性约简的定义中,其中属性权重是属性重要度的数值指标。通过构建优化问题来求解属性权重,证明了属性依赖度即是属性权重的最优解。因此,提出了基于属性权重排序的约简算法,从而大大提升了约简的速度,使得约简算法可以应用于大规模数据集,特别是高维数据集中。
英文摘要:
      Now the existing classical reduction algorithms have high time consumption,especially on the large scale datasets.To handle this problem,this paper introduced weights into the concept of attribute reduction,where weight is the measure of attribute significance.By building optimization problem about weights,it is fond that the attribute dependency degree is just the optimal solution of the weights.As a result,this paper proposed a reduction algorithm based on ranked weights,which significantly accelerate attribute reduction.Numerical experiments demonstrate that the proposed algorithm is suitable on large scale datasets,especially on the datasets with high dimension.
查看全文  查看/发表评论  下载PDF阅读器