马建敏,姚红娟,潘笑晨.串行概率粗糙集近似[J].计算机科学,2018,45(1):79-83
串行概率粗糙集近似
Serial Probabilistic Rough Set Approximations
投稿时间:2017-03-03  修订日期:2017-07-08
DOI:10.11896/j.issn.1002-137X.2018.01.012
中文关键词:  概率粗糙集,串行概率近似空间,串行概率粗糙集,单调性
英文关键词:Probabilistic rough set,Serial probabilistic approximation space,Serial probabilistic rough set,Monotonicity
基金项目:本文受国家自然科学基金项目(10901025,11501048)资助
作者单位E-mail
马建敏 长安大学理学院数学与信息科学系 西安710064 cjm-zm@126.com 
姚红娟 长安大学理学院数学与信息科学系 西安710064  
潘笑晨 长安大学理学院数学与信息科学系 西安710064  
摘要点击次数: 259
全文下载次数: 187
中文摘要:
      经典的概率粗糙集模型是基于等价关系和条件概率提出的。但在实际应用中,知识库存在多种不确定性因素,使得对象间的关系未必满足等价关系。因此在保证条件概率有意义的情况下,将等价关系推广到串行二元关系,讨论了串行关系下的概率粗糙集近似;研究了当目标概念发生变化时,串行概率粗糙下、上近似的性质;进一步,通过调整两个阈值,给出了对应的串行概率粗糙下、上近似的变化趋势。
英文摘要:
      The classical probabilistic rough set model was proposed based on an equivalence relation and a conditional probability.However,uncertainty in knowledge base makes it difficult to satisfy the equivalence relation between any two objects.This paper considered the serial binary relation instead of an equivalence relation,making the conditional probability meaningful.Then the serial probabilistic rough set approximations were introduced based on a serial relation.Properties of the serial probabilistic rough lower and upper approximations were discussed when the target concepts are variable.Furthermore,by adjusting the two thresholds,the corresponding serial probabilistic rough lower and upper approximations were also investigated.
查看全文  查看/发表评论  下载PDF阅读器